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DISCLAIMER 

The Airborne Infection Risk Calculator (AIRC) is made available on an as-is basis without guarantee or 
warranty of any kind, express or implied.  Neither the authors nor reviewers accept any liability resulting 
from the use of AIRC or its documentation.  This is a preliminary decision-support tool that will be 
revised as the science surrounding airborne transmission of SARS-CoV-2 and other pathogens advances.  
Implementation of AIRC and interpretation of its calculations are the sole responsibility of the user. 

VERSION 3.0 BETA ACKNOWLEDGEMENT 

The authors thank Dr. Ivan Lunati at the Laboratory for Multiscale Studies in Building Physics, Empa - 
Swiss Federal Laboratories for Materials Science and Technology, Switzerland, for his quantitative 
review of Version 2.1 of the tool. 

VERSION HISTORY 

Initial Release Version 1.0 – July 9, 2020 
 
Version 2.0 – September 9, 2020. 

• Added stationary exposure conditions (SEC) model with complete solution of the infection risk 
equations (AIRC SEC). 

• Changed default values by activity level to 66th and 90th percentile instead of 85th percentile for 
the Version 1.0 modeling sheet, now termed the AIRC transitional exposure conditions (TEC) 
model.  The 66th percentile values are used for probability of infection estimates and the 90th 
percentile values are used for room occupancy calculations. 

• Changed Version 1.0 terminology of “individual infection risk” estimates to “probability of 
infection” estimates for the AIRC TEC model (see new Glossary). 

• Added ability to model any number of infectious occupants present at time zero. 
• Added ability to specify two separate custom emission rates and inhalation rates for different 

occupants for the AIRC TEC model. 
 

Version 2.1 – October 6, 2020. 
• Added the option to use a fixed, or certain, quanta emission rate (ERq) for the SEC model, which 

can be entered on the “SEC Calculations” tab and then selected from the dropdown activity lists 
on the “AIRC SEC” tab. 

• Corrected the PI(ERq) plot on the activity #1, t1 graph on the “SEC Method” tab. 
 

Version 3.0 – April 29, 2021. 
• Updated SARS-CoV-2 ERq distributions and included SARS-CoV-2 variant multiplier and four 

additional pathogens based on our pre-print: https://doi.org/10.1101/2021.01.26.21250580 . 
• Included Revent calculations and secondary transmission histograms based on a specified 

occupancy for the SEC model. 
• Updated the SEC model to include stochastic ERq distributions for up to 10 infectious occupants. 
• Changed default values for the TEC model to the 75th percentile (adjustable). 
• Changed the maximum occupancy calculation from using the 90th percentile ERq value to 1/R 

(SEC) and 1/PI (TEC). 
• Corrected the SEC integration calculation to account for unequal spacing of the log10(ERq) values. 

 
 

https://doi.org/10.1101/2021.01.26.21250580
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Updated Glossary of Key AIRC Terms 

AIRC Stationary Exposure Conditions (SEC) Model: A constant emission source and exposure model that 
considers the full range of possible quanta emission rates for a selected respiratory activity and their 
respective probabilities of occurrence with no time limit.  Infectious and susceptible occupants are 
modeled as being together in perfect coincidence. 
 
AIRC Transitional Exposure Conditions (TEC) Model: An update to the model provided in AIRC 1.0, where 
transitional exposure scenarios of both infectious and susceptible persons coming and going can be 
modeled for a total exposure period of up to 8 hours. 
 
Room Volume (V): The volume of the room or space being modeled, within which air can be assumed to 
be reasonably well mixed. 
 
Air Exchange Rate (AER): The rate at which air in the room or space is replaced with fresh air through 
mechanical or natural means, measured in the number of air changes per hour. 
 
Susceptible Occupant A: A susceptible person who can enter and leave the room in the AIRC TEC model 
at any points in time. 
 
Continuous Occupant: A susceptible person who is in the room in the AIRC TEC model for the full length 
of the simulation. 

Infectious Occupants at Time Zero: An infectious person or group of persons who are initially present in 
the room in the AIRC TEC model, and who all must leave the room together at the same time. 

Infectious Occupant A: An infectious person who can enter and leave the room in the AIRC TEC model at 
any points in time. 

Quanta Emission Rate (ERq): A quantum is the dose of airborne droplet nuclei required to cause infection 
in 63% of susceptible persons.  The quanta emission rate is the number of quanta released into the air 
per unit time as a function of infectious occupant expiratory activities, respiratory parameters, and 
activity levels. 

Probability of Infection (PI): The percent chance of infection of an exposed susceptible occupant 
receiving a calculated dose of quanta generated by a fixed, or certain, quanta emission rate. 

Infection Risk (R): The percent chance of infection of an exposed susceptible occupant taking into 
account all possible ERq values for a certain activity as defined by a probability density function. 

Event Reproduction Number (Revent): The average number of secondary cases (C) expected to result from 
an infectious occupants at an event (can be more than one in the AIRC tool), calculated as the product of 
the infection risk (R) and the number of exposed susceptible persons (S) at the event. AIRC calculates 
the maximum number of occupants to maintain Revent below 1 as 1/R for the SEC model, and 1/PI for the 
TEC model.  The term Revent replaces the term ‘basic reproduction number, R0’ in prior versions of AIRC. 
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VERSION 3.0 BETA PREFACE & NEW EXAMPLES 
This Preface briefly documents changes to the AIRC tool included in the Version 3.0 Beta release.  A 
comprehensive update to the User Manual will be posted once the Beta review is complete.  An 
annotated version of the AIRC 2.1 User Manual is included as an appendix to this document, which will 
ultimately be updated and combined with this Preface. 

The Version 3.0 edition of AIRC includes updates to the quanta emission rate (ERq) distributions for 
SARS-CoV-2, and includes ERq distributions for four other pathogens in addition to SARS-CoV-2 as 
documented in https://www.medrxiv.org/content/10.1101/2021.01.26.21250580v1 : 

• Seasonal influenza virus (“flu”); 
• Human rhinovirus (“HRV”); 
• Measles virus (“MeV”); and 
• Mycobacterium tuberculosis, including a distribution based on the bacillary load of active, 

untreated cases (“TB”), and that after approximately two weeks of treatment (“TB OT”). 

All ERq distributions are lognormal and parameters can be found on the ‘ERq’ tab of the workbook.  In 
addition, an ERq multiplier is provided to account for increased transmissivity of SARS-CoV-2 variants 
(“CoV-2 (V)”), with a default suggested value of 2.0. 

An additional upgrade for the Version 3.0 Beta edition is the inclusion of ERq distributions for up to 10 
infectious occupants in the SEC version created using Monte Carlo simulation (e.g. randomly sampling 
the ERq distribution up to 10 times and summing the results).  For over-dispersed pathogens such as 
SARS-CoV-2, TB, and MeV this provides a more accurate quantification of the higher expected 
cumulative emission from multiple infected occupants in a shared airspace, as opposed to using the 
simple product of the number of infecteds times the ERq for one infected occupant.  Note that custom, 
user-defined ERq distributions or fixed ERq values still use the simple multiplication approach.  The 
stochastic effect of multiple infecteds is shown on the box-whisker plot on the following page for the 
resting, oral breathing ERq distribution for TB (log10 average and standard deviation of -0.21 and 1.3, 
respectively). 

https://www.medrxiv.org/content/10.1101/2021.01.26.21250580v1
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In this plot the box spans the interquartile range, the whiskers extend from the 5th to 95th percentile 
values, and the median is denoted by the horizontal line in the box.  The median ERq for one infected 
occupant is 0.62 quanta per hour (h-1), but this rises over an order of magnitude to 9.7 quanta h-1 with 
three infected occupants sharing the airspace and rises to 40 quanta h-1 with 6 infected occupants.  The 
above plot clearly demonstrates the challenge presented by congregate living and working settings (e.g. 
care homes, abattoirs, prisons), where a single superspreading event (SSE) can initiate a massive 
outbreak due to the high cumulative airborne emission expected from the second generation.  It also 
shows why the simultaneous introduction of multiple infecteds into such a micro-environment is much 
more likely to cause an explosive airborne outbreak than introducing a single case. 

Another important upgrade in Version 3.0 Beta is the inclusion of histograms showing the probability 
distribution of secondary cases for the SEC model.  Revent (see Glossary) is the expected number of 
secondary cases arising on average from this distribution.  These histograms help visualize the effect of 
over-dispersion in airborne contagion and assess the probability of SSEs.  For example, the histogram on 
the following page for a high emitting activity shows a probability of at least 7 secondary cases of 
approximately 50%, approximately twice as likely as the probability of <1 secondary case: 
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Alternatively, a low emitting activity (resting, oral breathing) histogram is presented below: 

 

Our calculation of Revent is based on a numerical integration approximating the average value that would 
result from performing the calculation using a Monte Carlo simulation randomly drawing from the 
lognormal ERq distribution and calculating PI.  An unrestricted Monte Carlo simulation would result in a 
slightly higher Revent value due to increased draws from extreme percentile values.  The histograms are 
useful because they present the probability of specific secondary transmission outcomes independent of 
the averaged, over-dispersed Revent calculation (for example, the probability of <1 secondary case). 

An important consideration with the inclusion of additional pathogens is that the airborne inactivation 
rate will vary between pathogens with markedly different behavior depending on ambient relative 
humidity (RH).  Subsequent versions of this tool may automate this, but in the interim we have 
developed the below table which may be of assistance to users.  Overall, the data are consistent with 
the general observation that viruses with lipid envelopes (influenza, coronaviruses, respiratory syncytial 
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virus [RSV] and measles) remain active for longer in air with lower RH, versus the converse for viruses 
with non-lipid envelopes (adenovirus, rhinovirus, coxsackievirus).  Please note values should be 
considered approximate because in some cases they were digitized from graphs. 

Literature Summary of Viral Inactivation Rates in Aerosol (hr-1) 

Relative 
Humidity 

SARS-CoV-2 Measles Influenza EMC virus Adenovirus 4 RSV 
(Dabish et al., 

2020) 
(De Jong and 

Winkler, 1964) 
(Yang and Marr, 

2011) 
(De Jong et 
al., 1975) 

(Miller and 
Artenstein, 1967) 

(Rechsteiner and 
Winkler, 1969) 

20% 0.07 0.48 0.5 15.4 3.0 1.2 
30% 0.26 0.53 0.8 14.8 -- 2.5 
40% 0.64 0.70 1.0 14.8 -- 1.4 
50% 1.00 1.56 1.3 10.8 2.2 1.8 
60% 1.39 4.01 1.6 1.06 -- 1.6 
70% 1.73 6.70 1.8 0.16 -- 3.4 
80% -- 5.66 2.1 0.05 0.9 5.1 

 

Table References: 

Dabisch P, Schuit M, Herzog A, et al.  The influence of temperature, humidity, and simulated sunlight on 
the infectivity of SARS-CoV-2 in aerosols, Aerosol Science and Technology. 2021;55(2):142-153. 

De Jong JG, Winkler KC. Survival of measles virus in air. Nature. 1964;201:1054-1055. 
doi:10.1038/2011054a0 

Yang W, Marr LC. Dynamics of airborne influenza A viruses indoors and dependence on humidity. PLoS 
One. 2011;6(6):e21481. doi:10.1371/journal.pone.0021481 

De Jong JG, Harmsen M, Trouwborst T. Factors in the inactivation of Encephalomyocarditis virus in 
aerosols. Infect Immun. 1975;12(1):29-35. doi:10.1128/IAI.12.1.29-35.1975 

Miller WS, Artenstein MS. Aerosol stability of three acute respiratory disease viruses. Proc Soc Exp Biol 
Med. 1967 May;125(1):222-7. doi: 10.3181/00379727-125-32054. PMID: 4290945. 

Rechsteiner J, Winkler KC. Inactivation of respiratory syncytial virus in aerosol. Journal of General 
Virology, 1969;5:405-410. 

AIRC 3.0 EXAMPLES 
Four new examples are provided in this section to highlight the inclusion of the four additional 
pathogens (TB, MeV, HRV, and flu) and to compare tool output to the seminal works on airborne 
contagion.  Emphasis is placed on comparing model predictions to the proportion of infected occupant 
introductions that failed to reproduce infection (e.g. < 1 secondary case).  Please note to better reflect 
the methodology used in seminal works, the inactivation rate and particle deposition rate terms are 
omitted from the examples.  Their inclusion would further increase the proportion of zeros in each 
example. 
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TB EXAMPLE 
An ERq of 1.25 quanta h-1 is often cited for a TB patient on treatment, based on Riley et al. (1962), but 
this represents a cumulative average emission rate over 2 years produced from a ward with 5 patients at 
a time, with the most infectious laryngeal case producing 60 quanta h-1.  This is similar to the Riley et al. 
(1959) report of the earlier 2-year study that found a cumulative ERq of 0.62-0.83 quanta h- from 6 
patients on the ward. 
Of epidemiological significance is the proportion of zeros that can be derived from these studies, 
representing the probability a TB patient failed to infect any guinea pigs.  For the two-year period 
documented in the 1962 paper, 130 total patients occupied the ward, 107 of which were sputum smear 
positive.  63 guinea pigs were infected from the smear positive group only, and the patient responsible 
for infection was identified for 50 of the 63 guinea pigs.  Combining Tables 4 and 5 of Riley et al. (1962) 
shows that of 50 guinea pigs with identified infectors, 43 (86%) were caused by 10 of 67 initially 
untreated patients (15%), and the remaining 7 (14%) were caused by 2 of 40 (5%) treated patients.  For 
simplicity, we combine these two groups to produce the following secondary case distribution (of guinea 
pigs) from the 107 sputum smear positive patients using Table 3 of Riley et al. (1962): 

• 95/107 (89%) patients infected zero guinea pigs; 
• 5/107 (4.7%) patients infected 1 guinea pig; 
• 2/107 (1.9%) patients infected 2 guinea pigs; and 
• 5/107 (4.7%) patients infected 5 or more guinea pigs. 

The guinea pig reproduction number for this group was 50 infections/107 patients = 0.47. 

The human to guinea pig transmission studies of Riley et al. were remarkably reproduced by Escombe et 
al. (2007 and 2008), involving 97 pulmonary TB patients with HIV co-infection, 66 of whom were 
sputum-culture positive.  Over 505 days, 292 guinea pigs were exposed to ward air, and 135 developed 
culture-positive TB infections.  Of these, spoligotyping results were available for 125 guinea pigs, and 
could be traced to 12 different patients.  Thus we can assume the following distribution for the 125 
identified infections from the group of 66 (Escombe et al., 2008): 

• 54/66 (82%) patients infected zero guinea pigs; 
• 7/66 (10%) patients infected 1 guinea pig; 
• 3/66 (4.5%) patients infected 2 guinea pigs; 
• 1/66 (1.5%) patients infected 4 guinea pigs; and 
• 1/66 (1.5%) patients infected 108 guinea pigs. 

The guinea pig reproduction number for this group was 125 infections/66 patients = 1.9, which is 
obviously highly over-dispersed due to the extreme infectiousness of the one patient (see Meslew et al. 
[2019] for epidemiological quantification of TB over-dispersion). 

To illustrate the utility of the provided ERq distributions in the AIRC tool, we can simulate these two 
experiments using some simplifying assumptions within the SEC framework as follows: 
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Riley et al. (1962) experiment – TB OT ERq distribution (TB on treatment) 

• One infectious occupant with activity level of resting, oral breathing; 
• 14 day exposure period (two weeks on the ward); 
• Room volume of 1 m3 and AER of 390 h-1 (to achieve the reported flow rate at steady-state of 

390 m3 h-1, or 230 cubic feet per minute); 
• Inhalation rate of 0.0095 m3 h1 for the guinea pigs; and 
• 120 exposed guinea pigs 

Escombe et al. (2008) experiment – TB ERq distribution (Active, untreated TB) 

• One infectious occupant with activity level of resting, oral breathing; 
• 14 day exposure period (two weeks on the ward); 
• Room volume of 1 m3 and AER of 1,680 h-1 (to achieve the reported flow rate at steady-state of 

1,680 m3 h-1, or 28 cubic meters per minute); 
• Inhalation rate of 0.0095 m3 h1 for the guinea pigs; and 
• 80 exposed guinea pigs (the median monthly chamber occupancy). 

The SEC input screen for this scenario is below: 

 

The Revent screen is as follows: 
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For a two-week period, the TB OT distribution predicts an 89% probability of less than 1 guinea pig 
infection for the Riley et al. (1962) airflow rate with 120 exposed guinea pigs, whereas the TB 
distribution predicts a 79% likelihood of less than 1 guinea pig infection for the Escombe et al. (2008) 
airflow rate with 80 exposed guinea pigs, showing good agreement with the experimental data in terms 
of the proportion of zeros. 

Instead of modeling a single patient, we can model six patients on the ward together by changing the 
number of infectious occupants to 6.  The same two screens are as follows: 
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With six patients on a ward the probability of <1 guinea pig infections over a two week period is 
substantially lower, as expected.  The median ERq for the six-patient TB resting and oral breathing 
scenario is 40 quanta h-1, consistent with the value of 34 quanta h-1 calculated for the cumulative 
emission from a 6-bed ward with masks in use in the most recent guinea pig transmission experiments 
of Dharmadhikari et al. (2012).  The cumulative ERq of 138 quanta h-1 for the unmasked 6-patient cohort 
occurs at the 76th percentile value of the 6-person resting, oral breathing distribution, which is 
approximately the value that we define as the default ERq for the TEC version of the AIRC tool 
(Dharmadhikari et al., 2012). 

TB Example References: 

Riley RL, Mills CC, O’Grady F, et al. Infectiousness of air from a tuberculosis ward. Ultraviolet irradiation 
of infected air: comparative infectiousness of different patients. Am Rev Respir Dis 1962; 85:511-525. 

Riley RL, Mills CC, Myka W, et al. Aerial dissemination of pulmonary tuberculosis a two-year study of 
contagion in a tuberculosis ward. American Journal of Epidemiology 1959; 70(2):185-196.  

Escombe AR, Oeser C, Gilman RH, et al. The detection of airborne transmission of tuberculosis from HIV-
infected patients, using an in vivo air sampling model. Clin Infect Dis. 2007;44(10):1349-1357. 

Escombe AR, Moore DAJ, Gilman RH, et al. The infectiousness of tuberculosis patients coinfected with 
HIV. PLOS Medicine 2008; 5(9):e188.  

Dharmadhikari AS, Mphahlele M, Stoltz A, et al. Surgical face masks worn by patients with multidrug-
resistant tuberculosis: impact on infectivity of air on a hospital ward. American Journal of Respiratory 
and Critical Care Medicine 2012; 185(10): 1104–1109.  

Melsew YA, Gambhir M, Cheng AC, et al. The role of super-spreading events in Mycobacterium 
tuberculosis transmission: evidence from contact tracing. BMC Infect Dis. 2019;19(1):244. Published 
2019 Mar 12. doi:10.1186/s12879-019-3870-1 
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MeV EXAMPLE 
Riley et al. (1962) also documents the ERq for the average child with measles to be 18 quanta h-1.  This is 
based on a calculated probability of infection of 11% for a three-day prodromal exposure in a well-
ventilated classroom reported in Wells (1955).  We can reproduce the 18 quanta h-1 calculation based on 
Page 196 of Wells (1955) using a steady-state quanta concentration of ~0.014 quanta m-3 (from 2,500 
cubic feet per infective unit) and an average room ventilation rate of ~1,300 m3 h-1 (from 30 cubic feet 
per minute per pupil times 25 pupils, or 750,000 cubic feet divided by three 5.5-hour days). 

This is a total average emission rate from multiple years of data with over 100 introductions of individual 
measles cases into irradiated and unirradiated classrooms.  The 11% probability of infection comes from 
Table VIII of Wells (1955) Pages 180-181, obtained by dividing 87 secondary cases by 791 susceptibles 
exposed for the unirradiated classrooms.  Table VIII is further described on Pages 245-246 with respect 
to the proportion of zeroes, or the percent of measles introductions that failed to reproduce infection 
(43% in unirradiated classrooms, 75% in irradiated classrooms). 

Using Table VIII, we created a secondary case distribution using the “single exposure” category for the 
unirradiated classrooms with 6-10 susceptibles (the most populated group).  Adding two classrooms 
with 6-10 susceptibles and non-functional UV lights to this group (one with 3 infections, the other with 
7), and we get the following distributions of secondary cases from 29 measles-infected student 
introductions: 

• 13/29 (45%) infected zero classmates; 
• 9/29 (31%) infected 1 classmate; 
• 3/29 (10%) infected 2 classmates; 
• 3/29 (10%) infected 3 classmates; and 
• 1/29 (1.5%) infected 7 classmates. 

To evaluate this scenario in the SEC model, we use a classrooms size of 198 m3 (7,000 cubic feet from 
Wells [1943]), an air exchange rate of 6.5 h-1 calculated from the parameters presented in the first 
paragraph of this example, and the resting, oral breathing distribution for a 16.5 hour exposure (3 days).  
We can also simulate the irradiated rooms by increasing the air exchange rate to 65 h-1 based on the 
order of magnitude increase in sanitary ventilation estimated by Wells (1955).  The SEC input screen and 
Revent results screen (with 9 susceptible occupants) are on the following page: 



13 
 

 

 

The results of the data set and the AIRC model are fairly consistent in terms of the individual risk and 
expected number of secondary cases for the unirradiated classrooms (1.7 in AIRC versus 1.1 indicated by 
the data [31 infections/29 introductions, also consistent with an 11% infection risk with 9 susceptible 
occupants]); however, the secondary case distribution is more over-dispersed in the model than 
indicated by the Wells data.  In other words, the model calculates a higher proportion of zeros and a 
higher probability that nearly all susceptibles in the class will become infected. 

MeV Example References: 

Wells WF. Airborne Contagion and Air Hygiene. Cambridge, Mass.: Harvard University Press; 1955:423. 

Wells WF. Air disinfection in day schools. American Journal of Public Health 1943; 33:1436-1443. 
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HRV EXAMPLE 
Airborne transmission of HRV colds was conclusively demonstrated by Dick et al. (1987) through a series 
of transmission trials involving 12-hour poker games.  There were three poker games played with 8 
infected subjects and 12 susceptible subjects each, which yielded 5, 6, and 12 secondary cases for an 
overall attack rate of 61%, or 7.7 secondary cases per poker game.  As an AIRC example we can evaluate 
a 12-hour poker game in the SEC model based on a room volume of 92 m3 and air exchange rates of 0.3 
h-1 and 3.0 h-1 (used by Rudnick and Milton [2003] to model this experiment) at the resting, oral 
breathing and resting, speaking activity levels for HRV.  The SEC input and Revent output screens are 
presented below: 
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The resting, breathing ERq distribution appears sufficient to approximately reproduce the attack rate at 
the low ventilation rate, whereas vocalization appears necessary at the higher ventilation rate (to be 
expected playing poker).  The “donor” poker players were also symptomatic, so periodic coughing could 
also account for the additional emissions at a higher ventilation rate.  

HRV Example References: 

Dick EC, Jennings LC, Mink KA, Wartgow CD, Inhorn SL. Aerosol transmission of rhinovirus colds. J Infect 
Dis 1987;156(3):442-8. 

Rudnick SN, Milton DK. Risk of indoor airborne infection transmission estimated from carbon dioxide 
concentration. Indoor Air 2003;13:237–45. 
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FLU EXAMPLE 
To illustrate an AIRC example for seasonal influenza, we constructed a scenario resembling that of the 
human challenge transmission trial documented in Nguyen-Van-Tam et al. (2020), with related 
quantitative analysis documented in Bueno de Mesquita et al. (2020).  Our scenario consists of a 69 m3 
room shared by 3 infected occupants and 10 susceptible occupants for a total of 60 hours.  Risk is 
evaluated at air exchange rates of 0.3 h-1 and 3.0 h-1, as with the HRV scenario.  Input and results tabs 
are presented below: 

 

 

The results indicate low secondary transmission risk for the room with an air exchange rate of 3 h-1, with 
a 79% probability of <1 secondary case and overall infection risk of 6.8%.  This is generally consistent 
with the findings of Nguyen-Van-Tam et al. [2020], in which only 1 transmission trial resulted in a single 
secondary transmission.  Decreasing the ventilation rate by an order of magnitude significantly increases 
infection risk and reduces the probability of <1 secondary case to 19%, showing the importance of 
ventilation at reducing infection risk for long exposures to relatively low emission rates. 
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Flu Example References: 

Nguyen-Van-Tam JS, Killingley B, Enstone J, et al. Minimal transmission in an influenza A (H3N2) human 
challenge-transmission model within a controlled exposure environment. PLoS Pathog. 
2020;16(7):e1008704. 

Bueno de Mesquita PJ, Noakes CJ, Milton DK. Quantitative aerobiologic analysis of an influenza human 
challenge‐transmission trial. Indoor Air 2020; 00:1– 10.  
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DISCLAIMER 

The Airborne Infection Risk Calculator (AIRC) is made available on an as-is basis without guarantee or 
warranty of any kind, express or implied.  Neither the authors nor reviewers accept any liability resulting 
from the use of AIRC or its documentation.  This is a preliminary decision-support tool that will be 
revised as the science surrounding airborne transmission of SARS-CoV-2 and other pathogens advances.  
Implementation of AIRC and interpretation of its calculations are the sole responsibility of the user. 
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VERSION HISTORY 

Initial Release Version 1.0 – July 9, 2020 
 
Version 2.0 – September 9, 2020. 

• Added stationary exposure conditions (SEC) model with complete solution of the infection risk 
equations (AIRC SEC). 

• Changed default values by activity level to 66th and 90th percentile instead of 85th percentile for 
the Version 1.0 modeling sheet, now termed the AIRC transitional exposure conditions (TEC) 
model.  The 66th percentile values are used for probability of infection estimates and the 90th 
percentile values are used for room occupancy calculations. 

• Changed Version 1.0 terminology of “individual infection risk” estimates to “probability of 
infection” estimates for the AIRC TEC model (see new Glossary). 

• Added ability to model any number of infectious occupants present at time zero. 
• Added ability to specify two separate custom emission rates and inhalation rates for different 

occupants for the AIRC TEC model. 
 

Version 2.1 – October 6, 2020. 
• Added the option to use a fixed, or certain, quanta emission rate (ERq) for the SEC model, which 

can be entered on the “SEC Calculations” tab and then selected from the dropdown activity lists 
on the “AIRC SEC” tab. 

• Corrected the PI(ERq) plot on the activity #1, t1 graph on the “SEC Method” tab. 
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SECTION 1.  INTRODUCTION 
The Airborne Infection Risk Calculator (AIRC) is an airborne contagion modeling tool programmed in 
Microsoft Excel and designed to assist facility managers, building engineers, and public and occupational 
health professionals in prospectively evaluating individual infection and community transmission risks 
associated with specific indoor environments.   AIRC can help users address two primary questions 
related to the risks associated with occupying an indoor space when community transmission of an 
infectious airborne pathogen, such as SARS-CoV-2, is occurring:   

1. What is the potential infection risk associated with varying lengths of stay in the space? 
2. What number of occupants helps maintain a basic reproduction number (R0) less than one to 

prevent the exposure from further contributing to disease spread in the population? 

AIRC is directly based on the novel risk modeling approach developed for SARS-CoV-2 by Buonanno et al. 
(2020a) and Buonanno et al. (2020b).   As stated by Buonanno et al. (2020a): 

“This approach, based on the principle of conservation of mass, represents a tool to connect the medical 
area, concerned with the concentration of the virus in the mouth, to the engineering area, dedicated to 
the simulation of the virus dispersion in the environment.” 

While AIRC and its underlying methods were created in direct response to the SARS-CoV-2 pandemic, 
the hope is that AIRC becomes a useful risk management tool for other airborne pathogens such as 
influenza, tuberculosis, and rhinovirus.  The foundation for AIRC was provided by quantification of the 
quanta emission rate data of SARS-CoV-2 as a function of different respiratory activities, respiratory 
parameters, and activity levels.  A quantum is the dose of airborne droplet nuclei required to cause 
infection in 63% of susceptible persons (Buonanno et al., 2020a).  AIRC applies this quanta emission rate 
in an acknowledged infection risk model to simulate the individual infection risk associated with 
customized exposure scenarios, and the average number of infected people resulting from this scenario, 
i.e. R0 (the basic reproduction number). [CHANGED TO EVENT REPRODUCTION NUMBER] 

New to Version 2.0, AIRC has two different risk modeling frameworks, both contained within the same 
workbook: 

#1) AIRC Stationary Exposure Conditions (SEC) – a constant emission source and exposure 
model that considers the full range of possible quanta emission rates for a selected respiratory 
activity and their respective probabilities of occurrence.  The risk equations are completely 
solved for three (3) different user-defined exposure times without a time limit. 

#2) AIRC Transitional Exposure Conditions (TEC) – an update to the model provided in AIRC 1.0, 
where transitional exposure scenarios of both infectious and susceptible persons coming and 
going can be modeled for a total exposure period of up to 8 hours. 

For both model types, the viral emission rate for each infectious individual, and the inhalation rate for 
susceptible individuals, can be selected based on a list of activities, and the user can specify the 
dimensions of the occupied indoor space and an infectious viral removal rate term accounting for three 
mechanisms: particle deposition, viral inactivation, and site-specific ventilation rate.  Data input and 
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results presentation were simplified to facilitate ease of use by non-quantitative professionals, while 
also providing some flexibility for more advanced users. 
Limitations 

The primarily limitation of AIRC is its adoption of a completely mixed box model approach to simplify 
extremely complex indoor fluid dynamics processes.  The result of this simplification is a viral exposure 
concentration that is uniform across the room, instead of a three-dimensional, spatially variable plume 
with higher exposure concentrations closer to the source of the viral emissions.  Additional limitations 
include the adoption of uniform values representing particle deposition and viral inactivation rates that 
do not vary according to site-specific environmental conditions, and the maximum TEC simulation length 
of 8 hours.  Secondary engineering and administrative controls, such as air filtration, UV disinfection, 
and mask-wearing, are not explicitly included in AIRC, but more advanced users can adjust input 
parameters to account for these interventions.  Additional discussion of AIRC concepts and their 
limitations are provided in Section II, with specifics surrounding the useful scale of AIRC applications.  
Lastly, a major epidemiological limitation is the requirement to specify the number of infectious 
occupants in a space and their constant emissions-generating activity, rather than adopting a 
probabilistic approach taking into considering the overall prevalence of the virus in the community and 
the likelihood of infectious person occupancy times and activities.  Additionally, the selected dose-
response model does not consider variation in host sensitivity to the pathogen of interest, for example 
immunity from prior exposure or vaccination. 

AIRC is a risk screening tool that approximates more complicated processes occurring in reality.  As such, 
conservative assumptions should be used for input parameters, with special attention given to the 
quanta emission rate and room air exchange rate.  More sophisticated numerical models should be 
applied for situations where high-resolution, spatially representative results are required, or where 
needed for detailed design of secondary engineering controls in high-risk, complex settings.  For CFD 
examples, see Vuorinen et al. (2020), Hosotani et al. (2013), and Chen et al. (2012). 

Target Users 

The target users of AIRC are building managers, engineering consultants, and public, occupational, and 
environmental health scientists.  Users should be proficient in Microsoft Excel and have a basic 
understanding of building systems and indoor air quality.  Users would also benefit from a basic 
understanding of human health risk assessment (see https://www.epa.gov/risk/conducting-human-
health-risk-assessment for an overview).  More generally, the target users are the technical 
professionals working to minimize the risk of airborne disease transmission by implementing the five-
step framework outlined by Morawska et al. (2020): 

1. Use engineering controls to reduce the risk of airborne infection; 
2. Use existing systems to increase ventilation rates (outdoor air change rate) and enhance 

ventilation effectiveness; 
3. Eliminate air-recirculation within ventilation systems so as to just supply fresh (outdoor) air; 
4. Supplement ventilation with filtration systems to capture airborne microdroplets; and 
5. Avoid over-crowding 

 

https://www.epa.gov/risk/conducting-human-health-risk-assessment
https://www.epa.gov/risk/conducting-human-health-risk-assessment
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SECTION II: AIRC CONCEPTUAL MODEL 
To understand the airborne transmission pathway, it is helpful to advance the conceptual model 
presented in Morawska and Cao (2020), Morawska (2006), and Li et al. (2005).  For purposes of AIRC, 
“airborne transmission” refers to inhalation of airborne droplet nuclei, or aerosols, at separation 
distances that can be greater than 2 meters away from an infectious emission.  This conceptual model 
represents the concentration of virus-laden small droplets as a plume, where expired viral content is 
diluted immediately upon expiration and as it travels in the air carried by the air flow.  As a result, the 
concentration of the virus does not increase uniformly in the interior environment of the enclosed space 
but is found at higher concentrations closer to the infectious subject. 

Unfortunately, due to the complexity of indoor computational fluid dynamics (CFD), modeling this 
spatiotemporal plume presents a challenge to the broader public and occupational health community.  
As with other environmental contaminants in air and water, it is helpful instead to simplify the spatial 
component of fate and transport and use a completely mixed box model approach for risk calculation 
purposes.  AIRC adopts this completely mixed box modeling approach, directly following the process 
outlined in Buonanno et al. (2020a) and Buonanno et al. (2020b).  The emission of virus-laden small 
droplets is assumed to be instantaneously and completely mixed into a box representing an enclosed 
indoor environment or room, creating a time-dependent exposure concentration to susceptible 
occupants inside the box.  A conceptual representation of airborne transport and the box-model 
simplification for AIRC is presented as Figure 1. 
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Figure 1: Small Droplet Transport and AIRC Box Model Approach Modified from Morawska and Milton (2020) 

Figure 1 (A) illustrates the creation of an infectious droplet plume spreading throughout a poorly 
ventilated room.  Concentrations are higher closer to the emission source and decay moving further 
away and will reach a pseudo steady-state profile in time if conditions are held approximately constant.  
Figure 1 (B) shows the corresponding completely mixed box model for this scenario, where the 
concentration in time becomes uniform across the room, and susceptible individuals are therefore 
exposed to the same concentration regardless of their position in the room.  Differences in exposure risk 
between susceptible occupants in the room is therefore reduced to a function of exposure duration 
rather than spatial location.  Figure 1 (C) shows the conceptual effect of increasing the ventilation rate in 
the room.  The plume is reduced in intensity and extent, and the susceptible occupant is exposed to 
lower viral concentrations and consequentially has reduced infection risk.  Figure 1 (D) illustrates the 
completely mixed box model approach for the room with improved ventilation.  The susceptible 
occupant is exposed to a lower concentration and thus has a lower probability of infection for the same 
exposure time. 

With the box model simplification, it becomes straightforward for AIRC to calculate changes in room 
concentration over time.  Depending on the strength and duration of the emission rate and the 
ventilation rate in the room, the viral droplet concentration profile versus time will assume a predictable 
curve shape.  Three common concentration curves are presented in Figure 2. 
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Figure 2: Common concentration versus time curves for different contaminant source scenarios on a linear scale, 
based on concept presented in NEEC (2015).  Figure 2 (A) represents the concentration profile in a room with a 

constant emission source and constant ventilation rate, showing how the concentration approaches a steady-state 
asymptote.  Figure 2 (B) presents a scenario where the same emission is eliminated and concentrations decay 

accordingly due to constant ventilation.  Figure 2 (C) shows a more dynamic scenario where there are two 
separate, non-overlapping emission periods, with the second period resulting in higher concentration either due to 

a higher emission rate or a lower ventilation rate. 

With its simplifying assumptions, the accuracy and utility of AIRC becomes a question of scale.  In 
general, the smaller the enclosed space and the more completely mixed the air, the more the results will 
approximate reality.  An upper limit to the appropriate room size for AIRC cannot be definitively 
provided at this time, but applications to indoor spaces that are thousands of square meters in area with 
complex HVAC zoning are unlikely to produce useful risk predictions.  Alternatively, a room of 
approximately 500 square meters or less comprising a single HVAC zone is more likely to be a good 
candidate for AIRC application.  A practical way to accommodate larger buildings or spaces with complex 
zoning is to divide the area into sub-zones, each represented by an AIRC model.  The process is 
conceptually illustrated in Figure 3, which depicts a multi-zone modeling approach to characterize the 
March 2003 outbreak of SARS-CoV-1 in Ward 8A at the Prince of Wales Hospital in Hong Kong (Li et al., 
2005 and Xiao et al., 2017). 
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Figure 3: Simulated infectious aerosol distribution using a complex CFD model (A) and a simplified multi-zone 
approach (B), modified from Xiao et al., 2017.  Predicted aerosol concentrations for each approach are overlaid on 

top of the reported SARS-CoV-1 attack rate in the zone.  The index patient was located in the top left zone. 

Figure 3 (A) presents a more realistic spatial representation of aerosol distribution, characterized by a 
plume emanating from the index patient.  However, the multi-zone approach on Figure 3 (B) is likely 
sufficient to calculate infection risk, especially where conservative assumptions are used.  Wagner et al. 
(2009) takes a similar approach by implementing a Sequential Box Model (SBM) that incorporates air 
exchange between zones. 

Retrospective assessments of the AIRC risk modeling approach are provided in Buonanno et al. (2020b), 
simulating the outbreaks of SARS-CoV-2 at a restaurant in Guangzhou, China and a choir rehearsal in 
Skagit, WA, USA.  The ability of the AIRC approach to reasonably reproduce these airborne 
“superspreading events” indicate its validity for risk screening purposes, especially when considering the 
urgent and time-critical need for quantitative tools to inform decision making during the SARS-CoV-2 
pandemic.  Furthermore, as noted in Buonanno et al. (2020a), in epidemic modeling quantifying 
community transmission, it is impossible to specify the geometries, the ventilation, and the locations of 
all infectious sources in each microenvironment. Therefore, adopting the completely mixed box model 
approach is generally more reasonable than hypothesizing about myriad complex environments because 
results must be interpreted on a statistical basis (Sze To and Chao, 2010).   
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SECTION III: THE INFECTION RISK MODEL 
The detailed modeling approach implemented in AIRC and described in this section directly follows from 
Buonanno et al. (2020a) and Buonanno et al. (2020b). 

The model used to quantify airborne infection risk in AIRC was developed by Gammaitoni and Nucci 
(Gammaitoni and Nucci, 1997), and was successfully applied in previous papers estimating the infection 
risk due to different diseases (e.g. influenza, SARS, tuberculosis, rhinovirus) in various settings such as 
airplanes (Wagner et al., 2009), cars (Knibbs et al., 2011), and hospitals.  The model calculates the 
quanta concentration (n) in an indoor environment over time, subject to a constant quanta emission 
rate and removal rate.  As a reminder, a quantum is the dose of airborne droplet nuclei required to 
cause infection in 63% of susceptible persons (Buonanno et al., 2020a).  The full equation for n(t), 
including an initial concentration term (n0), is presented below: 

where IVRR (hr-1) represents the total infectious viral removal rate, I is the number of infectious subjects, 
V is the volume of the indoor air environment, and ERq is the abovementioned quanta emission rate 
(quanta/hr) characteristic of the specific disease/virus under investigation.  The IVRR term is the sum of 
three contributions, all expressed in hr-1: the air exchange rate (AER) via ventilation (typically measured 
in the number of air changes per hour), the particle deposition rate on surfaces (k, e.g. via gravitational 
settling), and the viral inactivation rate (λ)  (Yang and Marr, 2011).  Details on specification of these 
three parameters are provided in Section IV. 

In addition to the constant ERq and IVRR values, it is assumed that the latent period of the disease is 
longer than the time scale of the model, and the droplets are instantaneously and evenly distributed in 
the room, using the box model approach described in Section II (Gammaitoni and Nucci, 1997).  Once 
again, the latter represents a key assumption for the application of the model as it considers that the air 
is well-mixed within the modelled space.  The risk associated with an exposure is dependent on the dose 
of quanta and duration of exposure, as well as the probability of occurrence of this exposure condition.  
The dose of quanta (Dq) received by a susceptible subject can be obtained by integrating the calculated 
quanta concentration over the total exposure time (T), as follows:   

where IR is the inhalation rate of the exposed subject (m3/hr) which is a function of the subject’s activity 
level.  To determine the probability of infection (PI, %) of exposed susceptible occupants for a fixed ERq, 
a simplified exponential dose-response model is used as presented below:  

 

 

 

𝑛𝑛(𝑡𝑡) (
𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞
𝑚𝑚3 ) = 𝑛𝑛0𝑒𝑒−𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼⦁𝑡𝑡 +

𝐸𝐸𝑅𝑅𝑞𝑞⦁𝐼𝐼
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼⦁𝑉𝑉

(1 − 𝑒𝑒−𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼⦁𝑡𝑡) 
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The probability of infection assumes different values based on the selected quanta emission rate.  As 
such it is defined as a conditional probability for a discrete quanta emission rate, or PI(ERq).  To evaluate 
the individual risk (R) of an exposed person for a given exposure scenario, the probability of occurrence 
of each ERq value (PERq), which is defined by an ERq probability density functions (pdfERq), must also be 
evaluated. Since the probability of infection (PI(ERq)) and the probability of occurrence PERq are 
independent events, the individual risk for a given ERq, R(ERq), can be evaluated as the product of the 
two terms: 

𝑅𝑅�𝐸𝐸𝐸𝐸𝑞𝑞�(%) = 𝑃𝑃𝐼𝐼�𝐸𝐸𝐸𝐸𝑞𝑞� ∙ 𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸 

where PI(ERq) is the conditional probability of the infection, given a certain ERq, and PERq represents the 
relative frequency of the specific ERq value.  The individual risk (R) of an exposed person, considering the 
full spectrum of possible ERq values within a defined distribution, can then be calculated by integrating 
the pdfR for all possible ERq values, i.e. summing up the R(ERq) values as follows: 

𝑅𝑅 (%) = � 𝑅𝑅�𝐸𝐸𝐸𝐸𝑞𝑞�𝑑𝑑𝐸𝐸𝐸𝐸𝑞𝑞
𝐸𝐸𝐸𝐸𝑞𝑞

= � �𝑃𝑃𝐼𝐼�𝐸𝐸𝐸𝐸𝑞𝑞� ∙ 𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸�𝑑𝑑𝐸𝐸𝐸𝐸𝑞𝑞
𝐸𝐸𝐸𝐸𝑞𝑞

 

The individual risk R also represents the ratio between the number of infection cases (C) and the 
number of exposed susceptible individuals (S) for a given exposure scenario and taking into account all 
possible ERq values for the infectious subject under investigation (Buonanno et al., 2020b).  In 
retrospective analyses of documented outbreaks, the known C/S ratio is typically defined as the “attack 
rate”. 

New to Version 2.0, AIRC includes a stationary exposure conditions model (“AIRC SEC”) that fully 
implements the above method to calculate individual risk taking into account all possible ERq values for 
an assumed infectious occupant activity.  However, where the room ventilation, volume, subject 
activity, etc. are treated as constant values, Buonanno et al. (2020b) shows that a simplified estimate of 
R can be calculated by using the ERq value assumed with a probability of occurrence PERq=1 (i.e. 
considered as a certain emission) which induces a PI(ERq) equal to the risk R as shown through the full 
integration analysis.  This certain emission value is calculated to be the 66th percentile ERq value.  
Therefore, when the 66th percentile ERq value is used, the individual risk can be assumed to 
approximately equal to the probability of infection.  AIRC therefore provides the 66th percentile values 
for a range of respiratory activities and recommends these values to be used in risk calculations for the 
AIRC Version 1.0 update with transitional exposure conditions, now termed “AIRC TEC” (Buonanno et al., 
2020b).  [CHANGED TO 75th PERCENTILE {ADJUSTABLE} IN VERSION 3.0 BETA FOR NEW EMISSION 
DISTRIBUTION WITH INCREASED OVERDISPERSION] The key distinction between AIRC SEC and AIRC TEC 
is the type of exposure scenario being evaluated.  AIRC SEC assumes perfect coincidence in the presence 
of the two subjects as they enter together and leave the environment together.  AIRC TEC allows 
consideration of more dynamic scenarios where infectious and susceptible occupants can come and go 
and different times, and susceptible occupants can be exposed to residual viral droplets in the air.  
When the exact same scenario is evaluated using AIRC SEC and AIRC TEC, the results will be nearly 
identical for short exposures (<4 hours), but for longer exposures (e.g. 8 hours) the results may be 
slightly different due to the 66th percentile approximation adopted in AIRC TEC. [CONSISTENCY 
BETWEEN SEC AND TEC WILL VARY BY PATHOGEN, THE TEC PERCENTILE IS ADJUSTABLE] 
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On a population level, the basic reproduction number R0, representing the number of susceptible people 
infected after the exposure time, can be determined by multiplying the probability of infection (PI, %) by 
the number of exposed individuals.  For purposes of AIRC, however, reproductive effects are calculated 
differently to provide the maximum number of occupants that may keep the R0 below 1 for the scenario 
in question.  In this way the user can obtain a potential occupancy or crowding index that considers the 
need to reduce community transmission. [CHANGED TERMINOLOGY TO EVENT REPRODUCTION 
NUMBER] 

This maximum occupancy calculation uses the following equation, rounded down to the nearest integer: 

For both AIRC SEC and AIRC TEC, the PI value corresponding to the 90th percentile ERq value is used as 
the maximum R(ERq) values occur in the narrow range of 90th-95th percentile for the scenarios evaluated 
by Buonanno et al. (2020b).  [WITH THE IMPROVED EMISSION DISTRIBUTION THE MAXIMUM 
OCCUPANCY IS NOW CALCULATED AS 1/R FOR THE SEC VERSION AND 1/PI FOR THE TEC VERSION] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑀𝑀𝑀𝑀𝑀𝑀.𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑓𝑓𝑓𝑓𝑓𝑓 𝑅𝑅0(𝑡𝑡) < 1 =
1

𝑃𝑃𝐼𝐼(𝑡𝑡)
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SECTION IV: AIRC DATA ENTRY & RESULTS 
There are two tabs for the user to enter data in AIRC and view model output, the first tab entitled “AIRC 
SEC” (new to Version 2.0) and the second tab entitled “AIRC TEC”.  These two modeling sheets are 
completely independent.  If a user is only interested in one approach, the other one can be ignored.  For 
both sheets the user must enter a value into all cells with white fill and black text.  All cells with black fill 
and white text are calculated by AIRC and are locked to the user.  Cells with gray fill are informational 
and are not used by AIRC.  In addition, drop-down lists in cells with yellow fill are used on both tabs to 
select the desired activities for infectious and susceptible occupants.  Based on the assumption that 
users are most concerned with SARS-CoV-2, quanta emission rates associated with the selected 
activities are for SARS-CoV-2.  These values are defined on the “SEC Calculations” tab and the “TEC ERq 
IR” tabs for the two different modeling approaches. 

A description of each tab in the AIRC 2.0 workbook is provided below.  All tabs associated with AIRC SEC 
are shaded blue, all tabs associated with AIRC TEC are shaded yellow. 

AIRC SEC Tabs 

AIRC SEC Tab 1 Name: AIRC SEC 

Description: This tab contains model input and results for the constant source and exposure, termed 
“stationary exposure conditions” model (SEC) new to AIRC Version 2.0. The individual infection risk and 
maximum room occupancy is calculated for six different selectable infectious occupant activities for 
three different exposure lengths.  In addition, a sensitivity analysis on the air exchange rate parameter is 
presented for one infectious occupant activity where the user can enter five different air exchange rates 
to see how model results change. 

Model Input Parameters: 

1. Room Dimensions 

The room dimension parameters for the user to enter are the floor plan area (in m2) and the ceiling 
height of the occupied indoor space to be modeled (in m).  The product of the area and ceiling height is 
the room volume (m3). 

2. Infectious Viral Removal Rate 

As defined in Section III, the Infectious Viral Removal Rate (IVRR) is the sum of the air exchange rate 
(AER) via ventilation (also termed the number of air changes per hour), the particle deposition rate on 
surfaces (k, e.g. via gravitational settling), and the viral inactivation rate (λ).  Entry details on these three 
parameters are presented below. 
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Parameter Air Exchange Rate (AER) 

Units hour (hr-1) 

Recommended Values Use site-specific measured values, or design or estimated values if 
field measurements are unavailable.  For natural ventilation 
(infiltration only), values of 0.2 – 0.5 hr-1 are recommended.  For the 
opening of doors and windows on one side of a room, values of 1.0 
– 5.0 hr-1 are suggested.  It is noted that ventilation rates through 
windows are highly site-specific and the user is cautioned against 
making assumptions on the higher end of this provided range.  

Notes/Estimation 
Methods 

The AER is the most important site-specific parameter in the 
model and the largest contributor to virus removal.  Therefore, 
site-specific measurements or design values are the best sources 
for parameter input.  AER can be simply calculated as the total 
fresh outdoor airflow (OA) divided by the volume of the room.  
Recirculated airflow should not be included in the AER calculation 
as it represents fresh airflow only. 

 

If actual total and outdoor airflows cannot be measured directly, 
the percent OA delivered to a space is commonly estimated using 
air handler carbon dioxide (CO2) concentrations in parts per million 
(ppm) as follows: 

Note that the above calculation is also routinely performed using 
temperatures instead of CO2 concentrations, but that it is less 
accurate, especially when temperature differences are small. 
Another common method of estimating ventilation rate is using 
“rule of thumb” values per person based on steady-state CO2 

concentrations achieved in offices and classrooms with ASHRAE 
62n default occupancy rates, as follows (NEEC, 2015): 

Zone CO2 
(ppm) 

Outside Air  
(CFM per 
person)  

Outside Air 
(Liters (L)/s 
per person) 

Outside Air  
(m3/hr per 

person) 
2,500 5 2.4 8.5 
1,400 10 4.7 17 
1,000 15 6.9 25 
750 30 14 51 
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AIRC follows the risk minimization framework outlined by 
Morawska et al. (2020), in which enhanced ventilation is the 
primary reliable and readily available line of defense against 
airborne transmission in indoor air environments. Secondary 
measures where ventilation alone may be insufficient, such as 
enhanced filtration, ultraviolet germicidal irradiation (UVGI), 
and/or room humidification, are not explicitly included in AIRC.  
Advanced users of AIRC can include filtration in the model by 
adding “equivalent” air exchanges to the AER term. 

Azimi and Stephens (2013) provide a comprehensive review of 
infectious droplet nuclei filtration efficiencies (see Figure 4).  To 
incorporate filtration removal in AIRC, the user can calculate the 
equivalent AER in hr-1 as follows: 

where Qrecirculated is the airflow rate recirculated from the space 
through the filter, ƞfilter is the infectious droplet removal efficiency 
of the filter, and V is the volume of the room. 

The recirculated airflow plus the fresh outdoor airflow will equal 
the total airflow rate of the air handler.  Remember that the air 
exchange rate is calculated using only the fresh outdoor airflow 
rate, and if air is recirculated the AER will be reduced.  Example 
Application 3 presents how this calculation is performed for an air 
handler serving an office space. 

 
 

Parameter Particle Deposition Rate (k) (SARS-CoV-2) 

Units hr-1 

Recommended Value 0.24 

Notes/Estimation 
Methods 

The recommended value is from Buonanno et al. (2020a), which 
calculated the deposition rate as the ratio between the settling 
velocity of super-micrometric particles (roughly 1.0 × 10−4 m s−1 as 
measured by Chatoutsidou and Lazaridis [2019]) and the height of 
the emission source (1.5 m).  A site-specific computational fluid 
dynamics (CFD) model may be needed to quantify this parameter 
more accurately. 
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Parameter Viral Inactivation Rate (λ) (SARS-CoV-2) 

Units hr-1 

Recommended Value 0.63 

Notes/Estimation 
Methods 

The recommended viral inactivation rate is calculated from the 
SARS-CoV-2 half-life (1.1 hr) detected by van Doremalen et al. 
(2020) as follows: 

Users should follow the evolving literature on SARS-CoV-2 with a 
view towards refinement of this parameter.  Fears et al. (2020) 
reports retained infectivity and virion integrity of SARS-CoV-2 for 
up to 16 hours in respirable-sized aerosols.  For a resource to help 
incorporate UV treatment or relative humidity into this parameter, 
the user is referred to: https://www.dhs.gov/science-and-
technology/sars-airborne-calculator  (Schuit et al., 2020).  

Figure 4: Infectious droplet nuclei filtration efficiency (ƞfilter) as a function of HVAC filter MERV rating, using the 
minimum reported values from Azimi and Stephens (2013). 

 

https://www.dhs.gov/science-and-technology/sars-airborne-calculator
https://www.dhs.gov/science-and-technology/sars-airborne-calculator
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3. Number of Infectious Occupants 

New to Version 2.0, the user can model infectious occupants as a group of multiple individuals in the 
room for the same defined period of time.  For AIRC SEC, the infected group is in the room for the full 
length of the simulation with the susceptible individuals.  Any positive integer may be entered for this 
value.  [NOW SELECTABLE FOR UP TO 10 INFECTIOUS OCCUPANTS] 

4. Initial Quanta Concentration 

The initial quanta concentration term, in quanta/m3, has been provided in the event the user wants to 
model a scenario where residual viral emissions are present in indoor air at time zero.  This is a useful 
function where the user wants to begin a new simulation using the final quanta concentration of a 
previous simulation.  If the indoor air environment is expected to be free of airborne virus at the start of 
the simulation, the user should enter zero for this parameter.  

5. Exposure Time 

AIRC SEC calculates infection risk and maximum occupancy for three different exposure times that the 
user can enter in hours (with no time limit).  

6. Susceptible Inhalation Rate 

The user can select from a list of pre-determined activity levels (resting, standing, light exercise, heavy 
exercise) to quantify the inhalation rate of susceptible occupants in the model.  If a user would like to 
enter a custom inhalation rate value, this may be done on the SEC Calculations tab.   

7. Infectious Occupant Activities 

The user can select six (6) different pre-determined activity levels from the list provided in Table 1 to 
quantify the viral emission rate (ERq) of infectious occupants of the room, from Buonanno et al. (2020b).   

Table 1: Selectable Infectious Occupant Activities and Associated ERq Values 

[SUPERCEDED – SEE ‘ERQ’ TAB OF VERSION 3.0 BETA FOR UPDATED DISTRIBUTIONS FOR SARS-COV-2 
AND OTHER PATHOGENS] 

The results represent six different model realizations for the same scenario, not different infectious 
occupants doing different things in the same room.  This can be conceptualized as a sensitivity analysis 
on the selected ERq distribution for the model.  If a user would like to enter a custom ERq distribution or 
a fixed ERq value for use in the model, this may be done on the SEC Calculations tab.   

8. AER Sensitivity Analysis 

To help the user assess how model results change based on air exchange rate, the user may enter five 
different AER values that will re-calculate results for infectious occupant activity #6 only.   

9. Model Results 

This section presents the model results as the individual infection risk for exposed susceptible occupants 
for the three different exposure times, and as the estimated maximum number of occupants to maintain 
a reproductive number less than one for the modeled scenario.  In total the results reflect 33 different 
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model runs: 6 different infectious occupant activities at 3 different exposure times for the primary AER 
(18 runs), and 5 different AERs at 3 different exposure times for infectious occupant activity #6 (15 runs). 

AIRC SEC Tab 2 Name: SEC Graphs 

Description: This tab contains graphical results of the 33 different simulations run for AIRC SEC for the 
user’s input parameters.  Results are presented in four (4) different graphs.  The top graphs present 
infection risk as a function of the quanta emission rate at the fixed user-entered AER, and as a function 
of AER using infectious occupant activity #6.  The bottom graphs simply present the estimated maximum 
room occupancy instead of the infection risk.  Graphs will update automatically as user’s change input 
parameters, including titles. 

AIRC SEC Tab 3 Name: SEC Method [CHANGED TO REVENT CALCULATION PAGE WITH DEFINED 
OCCUPANCY AND SECONDARY TRANSMISSION PROBABILITY HISTOGRAMS] 

AIRC SEC Tab 4 Name: SEC Calculations 

Description: This tab contains the calculations for the stationary exposure conditions implementation of 
AIRC.  Advanced users can enter a fixed (certain) ERq value, custom ERq probability distributions and 
inhalation rates for use in the model. [A CUSTOM SARS-COV-2 VARIANT MULTIPLIER CAN ALSO BE 
ENTERED ON THIS TAB] 

AIRC TEC Tabs 

AIRC TEC Tab 1 Name: AIRC TEC 

Description: This tab contains the updated version of the Version 1.0 AIRC model with transitional 
exposure conditions.  New to Version 2.0, the user selects the infectious occupant and susceptible 
occupant activities directly on the input and results tab, now named AIRC TEC.  For this version of the 
model, the total time of occupancy, in minutes, represents the maximum duration of continuous 
occupancy of the modeled room by any person.  The maximum simulation length supported by AIRC is 
480 minutes (8 hours), therefore, the maximum value for this parameter is 480.  This parameter must be 
entered as an integer value.  AIRC calculates the continuous occupancy risk and maximum room 
occupancy based on the total time of occupancy entered by the user.  The total time of occupancy value 
entered by the user should be greater than the time of exit values for Infectious Occupant #1, Infectious 
Occupant #2, and Susceptible Occupant A. 

To define an exposure scenario, the user enters the time of entry and time of exit for infectious 
occupants and one susceptible occupant.  All times are to be entered in minutes and represent minutes 
after the start of the simulation.  Any number of non-zero infectious occupants can be assumed to be 
present at the start of the simulation (time zero), but all of these occupants must leave the room at the 
same time. [FOR VERSION 3.0 BETA UP TO 10 CAN BE SELECTED AS WITH SEC] Infectious Occupant A 
can be omitted from the model by selecting “No” from the drop-down list next to the “Include in 
Model?” field.  The values for quanta emission rate (ERq) for each infectious occupant, and the value for 
inhalation rate (IR) for Susceptible Occupant A and a continuous occupant of the space are pulled from 
the TEC ERq IR Tab. 
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The results section reports calculated risk values of interest for Susceptible Occupant A and for other 
susceptible persons who occupy the space for the entirety of the simulation (i.e. the total time of 
occupancy parameter).  The following values are reported: 

• Modeled Exposure Time: For Susceptible Occupant A this will be the time of exit minus the time 
of entry in minutes.  For continuous occupants this will be equal to the total time of occupancy 
parameter. 

• Probability of Infection: The probability of infection, PI (%), represents an estimate of the 
percent chance of infection for exposure to the quanta concentration profile integrated across 
the modeled exposure time for a certain, known emission rate.  When the 66th percentile value 
of ERq is used, the probability of infection is assumed to be approximately equal to the infection 
risk taking into account all possible ERq values for the infectious subject under investigation.  
However, since this is an approximation and a user may enter a custom value for ERq, AIRC TEC 
uses the probability of infection term instead of individual risk. 

• Exposure Time for 0.1% PI: This value is the exposure time in minutes associated with a 0.1% 
probability of infection, or a threshold of 10-3.  If the exposure time is less than this value, PI is 
estimated to be less than 0.1%, and vice versa.  The quanta concentration profile for Susceptible 
Occupant A will be different from that of the continuous occupants; hence, calculated exposure 
times may be different.  If Susceptible Occupant A or the continuous occupants do not exceed 
the 0.1% PI threshold during the simulation, AIRC presents a result of greater than (“>”) the 
modeled exposure time.  If a user enters extreme value parameters such as a very high ERq 

combined with a very small room volume, a #N/A value may result, meaning that the PI 
threshold is already exceeded at the first time step of 1 minute. 

• Exposure Time for 1.0% PI: This value has the same characteristics as the above parameter but 
uses a higher PI threshold of 1% (or 10-2).  The calculated exposure time for 1% PI will be higher 
than that of 0.1% PI.  The decision of what threshold to use for risk management purposes is up 
to the user and should depend on the type of occupancy and characteristics of the inhabitants 
and should appreciate the screening-level intent of the tool.  Calculated exposure times 
associated with other risk thresholds can be evaluated on the Model Graph. 

• Maximum Room Occupancy for R0 < 1: [CHANGED TO REVENT] This parameter represents the 
maximum number of occupants allowable in the room for the exposure time and quanta 
concentration profile of the designated scenario (e.g. Susceptible Person A or continuous 
occupancy) in order to keep the basic reproduction number (R0) below 1 for that exposure.  In 
other words, more than one person may be expected to become infected if the occupancy 
increases beyond this number.  Conceptually this is easier to understand for the continuous 
occupancy calculation as it represents the allowable number of occupants who will be present 
for the entire simulation.  For Susceptible Occupant A, the maximum room occupancy 
calculation applies to a cohort of persons sharing the same exact exposure profile as Susceptible 
Occupant A (i.e. entering and leaving at the same time).  If a user is interested in the calculated 
R0 value for a pre-determined number of occupants, it can be obtained by dividing the pre-
determined occupancy by the maximum room occupancy calculated by AIRC.  It is reiterated 
that the maximum room occupancy is for a specific exposure scenario up to a maximum of 8 
hours (480 minutes).  If this exposure scenario is expected to occur repeatedly, such as daily, the 
user may want to reduce the calculated occupancy further as R0 would be expected to exceed 1 
over time.  Alternatively, these cases could be evaluated as long-term exposures using the AIRC 
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SEC model.  As the reproduction number scales linearly with occupancy, reducing the AIRC 
calculated occupancy by one-half corresponds to an estimated R0 of 0.5. 

AIRC TEC Tab 2 Name: TEC ERq IR 

Description:  This tab provides the ERq and IR rates used in the AIRC TEC model in quanta/hr and m3/hr, 
respectively, associated with the selectable activity levels.  Two reference value tables are provided, one 
for infectious occupant quanta emission rates, and one for susceptible occupant inhalation rates.  
Summary tables are provided that show what values are used in the model based on the user’s 
selections.  If Infectious Occupant A is not included in the model as indicated on the AIRC TEC tab, its 
displayed value will be greyed out.  If the user would like to use a custom value for IR or ERq, the user 
can enter values on this tab.  Separate custom emission rates can be entered and selected for the group 
of infectious occupants present at time zero, and for Infectious Occupant A if included in the model. 

All provided values of ERq in the lookup tables are specific to the SARS-CoV-2 virus and represent the 66th 
and 90th percentile value of a lognormally distributed data set (base 10), as reported in Buonanno et al. 
(2020b).  The 66th percentile value is provided because the total individual risk is expected to be 
approximately equal to the probability of infection at this “certain emission” ERq value (Buonanno et al., 
2020b).  Hence the 66th percentile values are used for calculation of the probability of infection.  The 
90th percentile value is used for calculation of the maximum room occupancy, as the maximum R(ERq) 
values occur in the narrow range of 90th-95th percentile for the scenarios evaluated by Buonanno et al. 
(2020b). [CHANGED TO 75TH PERCENTILE VALUE AS DEFAULT WHICH CAN BE ADJUSTED BY THE USER – 
THIS VALUE IS ALSO USED TO CALCULATE THE MAXIMUM ROOM OCCUPANCY] 

All values of IR for the susceptible occupant are also provided from Buonanno et al. (2020a).  As with 
ERq, a custom entry option is provided for IR for advanced users, and different IR values can be specified 
for Susceptible Occupant A and a continuous occupant of the space. 

AIRC TEC also calculates the exposure scenario probability of infection for four additional fixed quanta 
emission rates on TEC ERq Analysis tab.  In Version 1.0, these emission rates were labeled to be 
associated with other pathogens.  Since all other parameters are held constant, Version 2.0 reframes 
this as an ERq sensitivity analysis.  However, the user may relabel the headers corresponding to the 
alternative ERq (e.g. ERq #2) if the goal is to characterize a specific pathogen. [DIFFERENT PATHOGENS 
ARE NOW SELECTABLE ON THIS PAGE, USING EITHER THE 75th OR USER-DEFINED PERCENTILE VALUE] 
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For reference, a range of literature values for ERq for different pathogens is presented in Figure 5, 
alongside the range of SARS-CoV-2 values reported in Buonanno et al. (2020b).  Quanta emission rates 
used in similar risk modeling analyses are presented in Table 2 and Table 3, the latter table for 
tuberculosis only based on Internal Clinical Guidelines Team (UK) (2016).  [TO BE UPDATED] 

 
Figure 5: Range of published quanta emission rates for six pathogens.  Range for rhinovirus from Rudnick and 

Milton (2003) and for SARS-CoV-1 from Azimi and Stephens (2013).  For SARS-CoV-2, the range and 66th percentile 
values for different activities are presented from Buonanno et al. (2020b).  See Tables 2 and 3 for influenza, 

measles and tuberculosis (TB) references (chart excludes estimates from aerosol-producing procedures for TB). 
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Table 2: Quanta Emission Rates from Published Risk Modeling Studies [TO BE UPDATED] 

Pathogen Modeled or Calculated ERq 
(Quanta/hr) Modeling Application Reference 

Influenza 

0.029 – 0.17 
95th % = 53, max = 630 

University of Maryland Human-
Challenge Transmission Trial 

Bueno de Mesquita et al. 
(2020), Yan et al. (2018) 

A (H1N1) = 9; A (H3N2) = 7 
B = 7; p-H1N1 = 21 

Derived Emission Rates from 
Elementary School Modeling Cheng and Liao (2013) 

CA04 = 15.9 
Rg-WH359 = 10.6 

Influenza Aerosol Experiments and 
Analytical System for Ferrets Zhou et al. (2018) 

67 Derived Emission Rate from School 
Influenza Surveillance Reports Liao et al. (2005) 

50-128 Assessment of Airborne Influenza 
Transmission on an Airplane 

Wagner et al. (2009), after 
Rudnick and Milton (2003) 

Measles 

log10(ERq): average = 2.78, 
stand. dev = 0.415 

Analysis of Measles Epidemics in 
Elementary Schools Riley (1980) 

1,925 (elementary school); 
2,765 (high school) 

Multi-Zone Transient Wells-Riley 
Modeling Study Azimi et al. (2020) 

8,640 Airborne Transmission in a Physician's 
Office Remington et al. (1985) 

SARS-CoV-2 
61 Guangzhou Restaurant  

Superspreading Event  Buonanno et al. (2020b) 

970 Skagit Valley Chorale 
Superspreading Event  Miller et al. (2020) 

 

Table 3: Tuberculosis Quanta Emission Rates from Published Risk Modeling Studies [TO BE UPDATED] 

Calculated ERq 

(Quanta/hr) Modeling Application Controlled Experiment 
with Guinea Pigs Reference 

1.25 TB patient on treatment x Riley et al. (1962) 

1.8 – 226 
(average of 37) 

Drug susceptible and MDR-TB, 
HIV co-infected patients x Escombe et al. (2008) 

12.7 Untreated TB case causing 
outbreak in an office  Nardell et al. (1991) 

34 (masks worn) 
138 (no masks) 

MDR-TB patients with mixed HIV 
status x Dharmadhikari et al. (2012) 

60 Laryngeal case of TB x Riley et al. (1962) 

108 Outbreak from an infectious 
MDR-TB case on a long flight  Ko et al. (2004) 

250; 360 Bronchoscopy-related outbreak  Nardell et al. (1991), Gammaitoni 
& Nucci (1997) 

2,280 Outbreak related to jet-irrigation 
of an abscess  Gammaitoni & Nucci (1997) 

5,400 Autopsy outbreak  Gammaitoni & Nucci (1997) 

30,840 Intubation-related outbreak  Gammaitoni & Nucci (1997) 
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As shown in Figure 5, the quanta emission rate for SARS-CoV-2 is highly variable depending on the 
emitting activity of the infectious individual.  The emissions rate for oral breathing at rest is comparable 
to the reported range for rhinovirus, whereas the emissions rate for speaking loudly during heavy 
activity (for example, singing), falls within the range of the highly infectious measles virus.  This may 
explain why SARS-CoV-2 superspreading events have been reported at nightclubs, choir practices and 
other settings where people are speaking loudly or singing at high activity levels in enclosed spaces.  On 
a population level, Dai and Zhao (2020) estimated the quantum generation rate of SARS-CoV-2 at 14-48 
per hour using a reproductive number-based curve fitting approach.  Dai and Zhao (2020) also report an 
ERq range of 6-140 quanta/hr for Middle East Respiratory Syndrome (MERS) virus, but the original 
source of this estimate could not be verified.  To derive an independent estimate of ERq for MERS and 
other viruses, AIRC can be used as an inverse model to back-calculate the quantum generation rate for a 
known airborne transmission scenario with a measured attack rate. 

With respect to mask wearing, Wood et al. (2018) found that at 2 meters from the source, both surgical 
and N95 masks reduced aerosols containing viable Pseudomonas aeruginosa in the droplet nuclei size 
range by over 90% during voluntary coughing in people with Cystic Fibrosis.  The findings were 
consistent with Driessche et al. (2015), which found an 86% reduction in environmental detection of 
airborne Pseudomonas aeruginosa concentration during mask wearing compared with the reference 
group (coughing without a surgical mask) in a controlled laboratory model.  While mask wearing 
therefore has the potential to be a highly effective measure reducing the quanta emission rate of an 
infectious subject, masks may be worn improperly or intermittently in indoor environments.  Therefore, 
the user is advised against using custom quanta emission rates where the provided percentile values are 
significantly reduced to account for mask wearing. 

The Institute for Health Metrics and Evaluation (IHME) at the University of Washington performed a 
meta-analysis of peer-reviewed scientific studies and medRxiv pre-prints to assess mask efficacy, the 
results of which suggest a reduction in infection for mask wearers by at least one-third (33%) compared 
to control groups (IHME, 2020).  Therefore, reducing the calculated risk value by a factor of 33% or less 
to account for effective mask wearing of both infectious and susceptible occupants may be a reasonably 
defensible approach. 

AIRC TEC Tabs 3, 4 Names: TEC Graph 2 hr, 8 hr 

Description: To help the user visualize how model calculations change in time based on the entered 
parameters, a graph of model results is presented including the following data series: 

• The calculated quanta concentration in the room in quanta/m3; 
• The probability of infection for Susceptible Occupant A; 
• The probability of infection for a person continuously occupying the space; and 
• The calculated maximum occupancy to maintain R0 <1 for continuous occupants of the space 

(e.g. the number of occupants allowable for a cohort entering at time zero). 

As the user may create scenarios of varying time scales, two graphs are provided: one limited to 120 
minutes and the second displaying results for the maximum 480 minutes.  The graphs are the same and 
two versions are only provided to facilitate data visualization for times of interest. 
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AIRC TEC Tabs 5-7 Names: TEC ERq Analysis and ERq Graph 2 hr, 8 hr 

Description: These tabs in AIRC summarize the results of the TEC exposure scenario modeling using four 
different user-entered quanta emission rates.  On TEC ERq Analysis tab, the user can input any quanta 
emission rate for both the infectious occupants initially occupying the space, and Infectious Occupant A.  
Probabilities of infection and exposure time thresholds for Susceptible Occupant A and a continuous 
occupant are also presented on this tab.  Probability of infection graphs for continuous occupancy are 
presented on the ERq Graph tabs.  These graphics are provided to establish a frame of reference for the 
model results and facilitate use of AIRC for deterministic sensitivity analysis for his or her original 
simulation, as all other parameters remain the same.  

AIRC TEC Tabs 8, 9 Names: Calculations 66 and Calculations 90 [NOW JUST ‘CALCULATIONS 75’] 

Description: These tabs of AIRC allows users to see the Excel formulas used to implement the TEC 
modeling approach.  Users can click on individual cells to see formulas and cell references and can adjust 
formatting if a time step is of interest.  The implementation approach is straightforward, and the 
formulas can be copied and pasted into a different spreadsheet program as needed.  The “66” tab uses 
the 66th percentile ERq values to calculate the probability of infection, while the “90” tab uses the 90th 
percentile ERq values to calculate the maximum occupancy for R0 < 1. 
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SECTION V: EXAMPLE APPLICATIONS [TO BE UPDATED, RISK ESTIMATES 
WILL BE HIGHER IN VERSION 3.0 BETA WITH ALL INPUT PARAMETERS 
THE SAME, DIFFERENCES WILL BE LESS FOR OCCUPANCY CALCULATIONS 
AS VERSION 2.0 CONSERVATIVELY USED THE 90TH PERCENTILE ERq] 
Four example applications are provided in this manual for AIRC 2.0 to assist the user in the process of 
creating a conceptual exposure model, entering input data, and visualizing and interpreting results.  
Note that with the changes to the provided quanta emission rates and risk calculation, model output 
with AIRC 2.0 will not exactly match the example applications described in the AIRC 1.0 User Manual.  
However, the risk modeling concepts remain the same. 

1. Squash 

Scenario Description:  Brlek et al. (2020) present a retrospective analysis of a cluster of five COVID-19 
cases linked to playing squash at a sports facility in Slovenia.  The authors conclude that viral 
transmission may have occurred through aerosol inhalation as all subjects shared the exact same poorly 
ventilated squash hall, and the aerosol emission rate for the infectious index case would have been high 
for strenuous physical activity.  While indirect transmission in the locker room or other parts of the 
facility through fomites (e.g. doorknobs), large respiratory droplets, or aerosols could not be ruled out, 
for purposes of this illustrative example we assume that all transmission occurred through aerosols 
within the squash hall. 

The sequence of events within the shared squash hall and the timeline for AIRC TEC modeling is 
described below (Brlek et al., 2020).  There were three independent squash matches and therefore 
three separate AIRC TEC scenarios are necessary.  Susceptible occupant A represents the susceptible 
squash players in each of the three successive matches and AIRC models: 

• The index case (infectious occupant at time zero) played squash with a susceptible occupant for 
one hour in the squash hall.  This match and exposure period for susceptible occupant A spans 
0-60 minutes in the AIRC model; 

• Two different susceptible persons started playing squash in the same squash hall 45 minutes 
after the prior match ended and played for 45 minutes.  This match and exposure period for 
susceptible occupant A spans 105-150 minutes in the second AIRC model; 

• Two different susceptible persons started playing squash just after the prior match ended and 
also played for 45 minutes.  This match and exposure period for susceptible occupant A spans 
150-195 minutes in the third AIRC model; 

• All 5 susceptible persons were infected with COVID-19 (100% attack rate for shared occupants 
of the squash hall). Of the five employees at the facility, none developed COVID-19 symptoms 
and the one employee who was tested received a negative result. 

Brlek et al. (2020) does not provide the room dimensions of the squash hall.  However, assuming the 
design followed the World Squash Federation (WSF) standard for a singles-court, we model the room as 
having an area of 62.4 m2 and a ceiling height of 5.64 m, for a room volume of 352 m3 (WSF, 2013).  As 
the squash hall was described as poorly ventilated, we assume an air exchange rate of 0.2 hr-1.  An 
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activity level of heavy exercise, loudly speaking is selected for the index case, and inhalation rates of 
heavy exercise are selected for all susceptibles. 

AIRC TEC Screenshots:  
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Discussion: The model calculates probability of infection estimates of approximately 40% for the 
susceptible person who played with the index case from 0-60 minutes, 18% for susceptible persons who 
played a match in the same hall from 105-150 minutes, and 8.7% for the susceptible persons who played 
a match in the same hall from 150-195 minutes.  These estimated attack rates were calculated using the 
66th percentile value for a person speaking loudly while exercising heavily.  Since they are lower than the 
remarkable 100% infection rate observed in this case study, if all infections were related to aerosol 
exposure in the shared squash hall it is likely that the index case was a so-called “supershedder” or 
“superspreader” whose emission rate represents a high percentile value.  Indeed, if we use the 95th 
percentile value of the ERq distribution for heavy exercise, loudly speaking (1,150 quanta/hr), the 
probability of infection estimates increase to approximately 98%, 79%, and 50% for susceptible squash 
players in the three different matches.  Alternatively, other pathways of transmission may have played a 
role beyond aerosol inhalation. 

These results are consistent with the retrospective modeling presented in Buonanno et al. (2020b), 
which estimated emission values occurring in the 92nd-94th percentile range for the well-publicized 
COVID-19 superspreading events in the restaurant in Guangzhou and the choir rehearsal in Skagit Valley.  
Similarly, Bueno de Mesquita et al. (2020) re-evaluated the well-studied 1977 outbreak of influenza 
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A/H3 in a Boeing 737 airliner and found the estimated emission rate to be consistent with the 95th 
percentile value of measurements of RNA shed in exhaled breath fine aerosols by symptomatic influenza 
cases described in Yan et al. (2018).  Lastly, in his paper presented at the Airborne Contagion conference 
held November 7-9, 1979 by the New York Academy of Sciences, Edward C. Riley noted that the often 
cited emission rate of approximately 5,600 quanta/hr for measles virus “would be expected only about 
one time in one hundred observations” (Riley, 1980).  The user can explore how increasing the 
ventilation rate alone reduces the probability of infection for the squash example in both the average 
case and the case of the supershedder. 

2. Seafood Market 

Scenario Description:  This example application is based on a modeling study presented in Zhang et al. 
(2020) that quantified the airborne transmission risk of SARS-CoV-2 during the initial phase of the 
outbreak at the South China Seafood Market in Wuhan, China in December 2019.  A zone model of 650 
m2 by 5 m high dimension was used to represent Street No. 7 of the naturally ventilated market.  A 
dose-response model by Monte Carlo simulation was used to estimate the risk of infection to consumers 
spending one hour in the market, and shopkeepers working 12-hour days in the market for the entire 
month of December.  The model assumed one infected shopkeeper working inside Street No. 7 with a 
viral emission rate of 50 plaque-forming units (PFU)/hr.  This emission rate corresponds to 
approximately 0.24 quanta/hr assuming 210 PFU/quanta as in Buonanno et al. (2020b), or the 40th 
percentile value of the resting, oral breathing activity level. 

For the AIRC TEC representation of this model, an activity level of standing, oral breathing is selected for 
the infectious shopkeeper as it is likely that the shopkeeper would be standing for a significant fraction 
of the day and talking occasionally.  Susceptible Occupant A is a consumer spending one hour in the 
market in the middle of the day at an activity level of light exercise due to the need to walk through the 
market.  The continuous occupant of the market is a susceptible shopkeeper with an activity level of 
standing.  An air exchange rate of 0.5 hr-1 is assumed to reflect the natural ventilation of the market.  
The same parameters are used in the SEC version of the model with a maximum modeled exposure time 
of 360 hours (30 days at 12 hours/day) to reflect an entire month worked by the susceptible shopkeeper 
in the presence of a fellow shopkeeper infected with SARS-CoV-2. 

AIRC TEC Screenshots: 
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AIRC SEC Screenshots: 
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Discussion: The TEC model results indicate a probability of infection of 0.028% for the susceptible 
consumer with a one-hour exposure in the market, and the SEC model results indicate an infection risk 
of 3.6% for the shopkeeper working the entire month.  Zhang et al. (2020) estimated the median risks 
for these exposures to be 0.00223% and 0.976%, respectively.  The approximate order of magnitude 
higher AIRC estimate for the one-hour exposure is due to the higher quanta emission rate and higher 
inhalation rate of the susceptible consumer.  If the ERq is reduced to 0.24 quanta/hr and the inhalation 
rate for the susceptible consumer is reduced to 0.6 m3/hr as modeled by Zhang et al. (2020), the AIRC 
probability of infection estimate is reduced to 0.0034% for the consumer, showing general consistency 
between the two models.  We note that the Zhang et al. (2020) zone model used a significantly lower 
inactivation rate corresponding to a half-life of 12 hours; however, this is offset by a more complex 
multi-surface particle deposition rate approach. 

In terms of a threshold value for acceptable risk, Zhang et al. (2020) adopts the available hospital bed 
capacity for COVID-19 treatment per capita in Wuhan (1.17 × 10−3, or 0.117%).  Using the activity level of 
standing, oral breathing, an air exchange rate of 6 hr-1 would be needed to reduce the shopkeeper’s 
infection risk to approximately this threshold level (0.13%) over a 60-hour workweek.  If an activity level 
of standing and speaking is assumed for the infectious shopkeeper, which is reasonable considering 
some level of customer interaction occurs, the exposure of a susceptible shopkeeper would exceed this 
risk threshold within approximately three hours in the naturally ventilated market. 

3. Abattoir 2.0 

Scenario Description:  This example application is based on a retrospective analysis of the 
superspreading event that preceded the largest SARS-CoV-2 outbreak in any German abattoir, 
presented in Gunther et al. (2020).  The index case worked three shifts while being infected, resulting in 
transmission to 20 of 78 fellow workers in the same “proximal” work area of 360 m2 by 6.1 m high 
(25.6% attack rate).  There was clear a spatial correlation to the pattern of infection, with workers 
stationed within 8 m of the index case experiencing an attack rate of 66%.  Gunther et al. (2020) reports 
that cooling air was recirculated through localized ceiling-mounted fans without filtration, and the air 
exchange rate for the entire processing plant was less than 1 air change per hour. 

This scenario is evaluated using AIRC SEC as the exposure time is long (24 hours, or three 8 hour shifts), 
and the index case and workers can be assumed to have a relatively consistent activity for the hours 
worked, and therefore relatively constant emission and inhalation rates.  The model is evaluated using 
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both the larger shared workspace of 360 m2, as well as within the smaller 8 m separation distance where 
ceiling recirculating fans may have created a local airflow mixing zone.  The air exchange rate is assumed 
to be 0.5 hr-1, and the susceptible workers are assumed to breath at a light activity level. 

AIRC SEC Screenshots: 
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Discussion: The model results indicate the documented attack rate of 25.6% for the larger 360 m2 
“proximal” work area, and 66% for the smaller 64 m2 work area, corresponds to a quanta emission rate 
between the infectious activity levels of standing, loudly speaking and light exercise, loudly speaking for 
a 24-hour exposure.  As the median ERq for these activities are 12.1 and 31.6 quanta/hr, respectively, 
this analysis shows that extreme value emission rates are not needed to cause major outbreak events 
where ventilation is poor, exposure periods are long, and activity levels are high.  This example also 
illustrates that while susceptible workers closer to the index case had a higher attack rate, the model 
produces representative results regardless of whether the larger or smaller room volume is used.  The 
completely mixed air assumption appears reasonable for this case.  However, the AER sensitivity analysis 
shows that the size of the exposure area has a significant impact on the necessary virus removal rate to 
mitigate local infection risk.  For the smaller modeled work area an AER of 15 hr-1 is insufficient to 
reduce infection risk below 1% for an 8-hour shift.  This indicates an advanced ventilation system for 
infection control and/or additional in-room disinfection may be needed for these types of exposures, in 
addition to proper personal protective equipment for workers. 

4. Hospital Waiting Area 

Scenario Description & Discussion:  This example is an AIRC reproduction of a modeling scenario 
presented in Beggs et al. (2010) to evaluate the risk of airborne infection in a hypothetical 132 m3 
hospital waiting area in the presence of one infectious occupant.  This example demonstrates the utility 
of the ERq sensitivity analysis feature of AIRC and compares AIRC output to a similar Gammaitoni-Nucci 
equation application in literature.  As Beggs et al. (2010) conducted a Monte Carlo simulation to 
evaluate the probability of infection for tuberculosis, measles, and influenza, the AIRC results are 
compared to the mean probability values calculated in the study for 30 minutes and 60 minutes of 
exposure.  A comparison of AIRC output and Beggs et al. (2010) results is presented in Table 3, below, 
and shows strong agreement.  Minor differences are potentially due to the slightly different inhalation 
rate, the integration approach, time step differences, and/or rounding, and are largest for measles.  
Input parameters are shown in the screenshots that follow. 

Table 3: Comparison of Calculated Probability of Infection, AIRC vs. Beggs et al. (2010) 

Disease 

30-Minute Waiting Room Exposure 60-Minute Waiting Room Exposure 

AIRC Probability 
of Infection 

Beggs et al. (2010) 
Mean Probability of 

Infection 

AIRC Probability 
of Infection 

Beggs et al. (2010) 
Mean Probability of 

Infection 
Tuberculosis 

(ERq #4) 0.34 % 0.34 % 0.89 % 0.87 % 

Influenza  
(ERq #3) 2.66 % 2.62 % 6.83 % 6.62 % 

Measles 
(ERq #2) 14.3 % 13.5 % 33.2 % 30.9 % 

 

AIRC TEC Screenshots (on following page): 
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